

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 11399–11409

Enantiomeric products formed via different mechanisms: asymmetric hydrogenation of an α , β -unsaturated carboxylic acid involving a $Ru(CH_3COO)_2[(R)$ -binap] catalyst

Masahiro Yoshimura, Yoshitaka Ishibashi, Kengo Miyata, Yuhki Bessho, Masaki Tsukamoto and Masato Kitamura*

Research Center for Materials Science and the Department of Chemistry, Nagoya University, Chikusa, Nagoya 464-8602, Japan

Received 8 August 2007; revised 22 August 2007; accepted 22 August 2007 Available online 26 August 2007

Abstract—Hydrogenation of (Z) -3-phenyl-2-butenoic acid with a $Ru(CH_3COO)_2[(R)$ -binap] (BINAP=2,2'-bis(diphenylphosphino)-1,1'-binaphthyl) catalyst in methanol gives (S) -3-phenyl-2-butanoic acid and its R enantiomer in a 97:3 (4 atm) to 94:6 (100 atm) ratio in quantitative yield. Both hydrogen gas and protic methanol participate in the saturation of the olefinic bond. Analysis of the products obtained using (Z)-3 phenyl-2-butenoic acid-3-¹³C and either H₂, a 1:1 H₂-D₂ mixture, or D₂ in CH₃OD indicates that several catalytic cycles are operative, showing different reactivity and stereoselectivity. The major S enantiomer was formed primarily by the standard Ru monohydride mechanism, whereas the minor *isomer is produced via more complicated routes.* - 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Asymmetric catalysis involves the multistep conversion of a prochiral substrate into an enantiomerically-enriched chiral product. The enantioselectivity has generally been analyzed as being due to competing diastereomorphic catalytic cycles utilizing a chiral catalyst, in which the ratio of the enantiomeric products is determined by the relative stabilities of the diastereomeric transition states of the first irreversible step, according to the Arrhenius equation.^{[1](#page-9-0)} In most cases, however, the primary presupposition, namely the operation of a single mechanism, has not been confirmed. 2 We have long suspected that in some cases, two enantiomers may be produced via entirely different pathways, instead of the diastereomorphically identical mechanism. A notable example is the BINAP–Ru-catalyzed hydrogenation of geraniol to citronellol.[3,4](#page-9-0) The minor enantiomer is derived via initial isomerization of the allylic alcohol to a homoallylic alcohol, γ -geraniol, wherein the two olefinic isomers exhibit opposite enantioselection.^{[5](#page-9-0)} Certain (E)- α -(acylamino)acrylic esters undergo E/Z isomerization in the presence of chiral phosphine catalysts in alcohols.[6](#page-10-0) Hydrogenation of imines catalyzed by a chiral titanocene^{[7](#page-10-0)} also involves prior syn/anti isomerization of the substrates. Thus, in these cases,

the minor enantiomers are derived more or less from iso-meric substrates formed during the reaction.^{[8](#page-10-0)} More generally, however, it is not unreasonable to assume that a reaction system contains several potentially active species that can catalyze reaction of the same substrate but with different reactivity and stereoselectivity, in either sense or extent. In a given catalytic system, these cycles are linked by various reaction parameters and, therefore, the observed enantioselectivity is the average of the contribution of these different mechanistic cycles. The following fully details a clear example of asymmetric catalysis giving enantiomers from the same substrate by different mechanisms. $9,10$

2. Results and discussion

2.1. Asymmetric hydrogenation of (Z)-3-phenyl-2-butenoic acid catalyzed by (R) -BINAP–Ru diacetate

 (Z) -3-Phenyl-2-butenoic acid $[(Z)$ -2] was selected as substrate and $Ru(CH_3COO)_2[(R)$ -binap] $[(R)-1]$ as catalyst. The standard hydrogenation conditions were $[(R)$ -1]=0.5 mM, $[(Z)-2]=100$ mM (substrate/catalyst ratio (S/ C $)=$ 200), solvent=methanol, and temperature= 30 °C. Reaction at 4 atm H_2 quantitatively gave (S)-3-phenylbutanoic acid $[(S)-4]$ in 94% enantiomeric excess (ee). The enantioselectivity was sensitive to the H_2 pressure. The ee of 94%, obtained for the 1–4 atm range decreased to 92% ee at 50 atm, and to 88% ee at 100 atm. As might be expected,

Keywords: Asymmetric hydrogenation; BINAP–Ru; α , β -Unsaturated carboxylic acid; Minor enantiomeric product; Mechanism.

^{*} Corresponding author. Tel.: +81 52 789 2957; fax: +81 52 789 2261; e-mail: kitamura@os.rcms.nagoya-u.ac.jp

^{0040-4020/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2007.08.071

however, the reaction rate was enhanced with an increase in hydrogen pressure.[2,11–13](#page-9-0)

The substrate (Z) -2 is stable and does not undergo geometrical or positional isomerization during the course of the hy-drogenation.^{[14](#page-10-0)} For comparison, hydrogenation of (E) -2 in methanol at 4 atm and $10-25$ °C for 25 h gave (R)-4 in 5% ee and 97% yield.^{[15](#page-10-0)} Notably, the E isomer readily isomerizes to 3.16 3.16 This β, γ -unsaturated carboxylic acid was hydrogenated with (R) -1 in methanol under similar conditions (S) C=200, 1.5 atm, 10–25 °C, 2 h) to afford (S)-4 in 74% ee.^{[15](#page-10-0)}

When (R) -1 was reacted with an excess of (Z) -2, ligand exchange occurred smoothly to afford crystalline $Ru[(Z) CH_3(C_6H_5)C=CHCOO_2[(R)$ -binap] $[(R)-5]$.^{[17–19](#page-10-0)} The molecular structure is described in Section 4. Over the course of the hydrogenation of (Z) -2, no substantial change was seen in the ¹H and ³¹P NMR spectra of the reaction mixture. Ru hydrides were undetectable when reacting (R) -1 and (Z) -2 under an H_2 atmosphere.

2.2. Isotopic labeling experiments

Comparison of the enantiomeric products obtained via reaction using H_2 , D_2 , and a 1:1 mixture of H_2 and D_2 provides useful information regarding the mechanism. To further insure the accuracy of the measurement of the isotopomer ratios, the 13 C-labeled substrate, (Z)-3-phenyl-2-butenoic acid-3-¹³C [(Z)-2-3-¹³C], was used for the hydrogenation. The experiments were carried out in $CH₃OD$ using (R) -1 as the catalyst, and varying the hydrogen pressure from 4 to 100 atm. The reactions using H_2 and the H_2-D_2 mixture were stopped upon 6–22% conversion to minimize complica-tions caused by gas/solvent and gas/gas isotope exchange.^{[2,20](#page-9-0)} Fortunately, isotope exchange is significantly retarded by the presence of the substrate, and the extent of the observed scrambling does not affect the mechanistic argument. The hydrogenation product was a mixture of eight isotopomers, (S) -4-h,h-3-¹³C, (S) -4-h,d-3-¹³C, $(2R,3S)$ -4-d,h-3-¹³C, $(2R,3S)$ -4-d,d-3-¹³C, (R) -4-h,h-3-¹³C, (R) -4-h,d-3-¹³C, $(2S,3R)$ -4-d,h-3-¹³C, and $(2S,3R)$ -4-d,d-3-¹³C.^{[21](#page-10-0)} Deuterium was not doubly incorporated at $C(2)$. The S and R enantiomers of 4 were separated by preparative HPLC on a chiral stationary phase and subjected to $^{13}C(^{1}H, ^{2}H)^{-1}H$ correlation NMR and ${}^{13}C[{^1}H, {}^{2}H]$ NMR analyses to determine the structure and the ratio of the four isotopomers, respectively. The relative stereochemistry of $4-d,h-3⁻¹³C$ was determined by ¹H NMR analysis. Reference $(2R^*, 3S^*)$ -4-d,h and $(2S^*, 3S^*)$ -4-d,h^{[21](#page-10-0)} samples were prepared by diimide reduction of (Z) -2-2-d and (E) -2-2-d, respectively, and occurred with complete cis stereochemistry.^{[22](#page-10-0)} Both the product and substrate were isotopically stable under the reaction conditions. [Table 1](#page-2-0) summarizes the product analysis.

Of note, the saturation of the olefinic bond of (Z) -2-3-¹³C utilizes both hydrogen gas and protic methanol. Thus, the reaction using H_2 in CH₃OD at 4–100 atm gave 4 containing 98.5–95% protium at C(2), while the protium content at C(3) ranges from 12% (4 atm) to 25% (10 atm) to 47% (50 atm) and 60.5% (100 atm). This trend was also the case when using an H_2-D_2 mixture, giving a 49–43% protium content at $C(2)$ and 7% (4 atm), 23% (50 atm), and 26% (100 atm) protium content at C(3). An increase in hydrogen pressure enhanced the degree of contribution of gaseous hydrogen. The extent of methanol participation was

Conditions	H_2 , atm				H_2-D_2 , atm			D_2 , atm	
	$\overline{4}$	10	50	100	$\overline{4}$	50	100	4	
Time	9 h	10 _h	10 min	7 min	9 h	12 min	7 min	35.2 h	
Gas analysis, %									
H ₂	98.0	98.7	99.7	99.8	49.0	44.0	48.6	$\overline{0}$	
HD	2.0	1.3	0.3	0.2	2.3	0.3	2.0	2.0	
D ₂	$\overline{0}$	$\boldsymbol{0}$	$\overline{0}$	$\mathbf{0}$	48.7	55.7	49.4	98.0	
Solvent analysis, %									
CH ₃ OH	\leq 1	$<$ 1	\leq 1	\leq 1	$<$ 1	\leq 1	\leq 1		
CH ₃ OD	>99	>99	>99	>99	>99	>99	>99	99	
Conversion, %	10	10	16	22	17	10	6	99.9	
$(S) - 4/(R) - 4^c$	97:3	97:3	95.5:4.5	94:6	97:3	96:4	94:6	97:3	
Protium incorporation, %									
H in $C(2)$	98.5	98.1	96.5	95	49	43	48	$\boldsymbol{0}$	
H in $C(3)$	12	24.7	47	60.5	$\overline{7}$	23	26	$\overline{1}$	
Product distribution, %									
Major enantiomer									
(S) -4-h,h-3- ^{13}C	10.3	22.7	44.5	57.4	3.1	9.3	12.8	$\boldsymbol{0}$	
(S) -4-h,d-3- ^{13}C	88.7	75.8	52.4	37.8	45.9	32.1	35.1	$\mathbf{0}$	
$(2R,3S)$ -4-d,h-3- ¹³ C	0.0	0.5	1.0	1.1	3.1	11.9	11.7	1.1	
$(2R,3S)$ -4-d,d-3- ^{13}C	1.0	1.0	2.1	3.7	47.9	46.7	40.4	98.9	
Minor enantiomer									
(R) -4-h,h-3- ^{13}C	53.3	56.7	72.9	82.2	23.3	24.4	30.0	$\boldsymbol{0}$	
(R) -4-h, d -3- $13C$	30.0	26.7	15.5	9.3	20.1	15.6	16.7	$\boldsymbol{0}$	
$(2S,3R)$ -4-d,h-3- ^{13}C	16.7	16.6	11.1	7.8	13.3	17.8	18.3	$\mathbf{0}$	
$(2S,3R)$ -4-d,d-3- ^{13}C	0.0	0.0	0.5	0.7	43.3	42.2	35.0	>99.9	

Table 1. Analysis of 4-3-¹³C obtained by isotopic labeling experiments using (Z) -2-3-¹³C and Ru(CH₃COO)₂[(R)-binap] [(R)-1]^a in CH₃OD^b

^a The detailed procedures for the reaction and analysis are described in Section 4.
^b CH₃OD contained 0.5% of CH₃OH. D₂ gas contained 0.4% of HD. ^c The ratio was determined by HPLC analysis.

greater than for the hydrogenation of enamides reported previously. $2,13$

Reaction at 4 atm of H_2 in CH₃OD afforded (S)-4 in 94% ee, consisting of (S) -4-h,h-3-¹³C, (S) -4-h,d-3-¹³C, $(2R,3S)$ -4d,h-3-¹³C, and (2R,3S)-4-d,d-3-¹³C in a 10.3:88.7:0:1.0 ratio. With 1:1 $H_2 - D_2$ in CH₃OD, the distribution was changed to 3.1:45.9:3.1:47.9.

At 50 atm, the major S product decreased to 95.5%. Increase in hydrogen pressure enhanced the degree of contribution of gaseous hydrogen. This trend is more significant at 100 atm. In addition, the isotope incorporation pattern varied significantly. The isotopomer ratio of (S) -4-h,h-3-¹³C, (S) -4h,d-3-¹³C, $(2R,3S)$ -4-d,h-3-¹³C, and $(2R,3S)$ -4-d,d-3-¹³C becomes 44.5:52.4:1.0:2.1 (50 atm) and 57.4:37.8:1.1:3.7 (100 atm) using H_2 in CH₃OD, and further changes to 9.3:32.1:11.9:46.7 (50 atm) and 12.8:35.1:11.7:40.4 (100 atm) for H_2-D_2 in CH₃OD. The reaction using D_2 and CH₃OD gave mostly $4-d,d-3$ ⁻¹³C as expected.

Hydrogenation in CH₃OH at $4-100$ atm gave (S)-4 in 94–88% ee. Neither the reaction with D_2 nor CH₃OD demonstrated any isotope effects on enantioselectivity. Most notably, the major S enantiomer and the minor R enantiomer displayed different isotopic labeling patterns. The hydrogen pressure also affected the product distribution. Of note are the distribution patterns in going from H_2 to H_2-D_2 as shown in Table 1—the major S enantiomer obtained with H_2 at 4 atm in CH₃OD was $4-h,d-3$ -¹³C (88.7%), which is followed by $4-hh+3-13C(10.3%)$ and $4-dh+3-13C(1.0%).$ In contrast, the R enantiomer consisted of $4-hh-3-13C$ (53.3%) , 4-h,d-3-¹³C (30.0%), and 4-d,h-2-¹³C (16.7%). Hydrogenation at 100 atm resulted in the S product containing 4-h,d-3-¹³C and 4-h,h-3-¹³C in comparable amounts, 37.8% and 57.4%, respectively, while the R enantiomer contains largely $4-h,h-3⁻¹³C$ (82.2%) together with other isotopomers. The minor *enantiomer appears to utilize more* gaseous hydrogen than the major S isomer. Use of a 1:1 mixture of H_2 and D_2 led to different distributions of the isotopomers, as discussed below in terms of mechanistic models.

2.3. Possible catalytic cycles

Reaction of phosphine–Ru(II) complexes and hydrogen generates a variety of Ru hydrides depending on the reaction conditions (solvent, acidity/basicity, H_2 pressure, etc.), which catalyze homogeneous hydrogenation of olefinic substrates.^{[23,24](#page-10-0)} Heterolytic cleavage of molecular hydrogen results in Ru monohydrides but, upon reaction with additional hydrogen molecules, Ru polyhydrides are also produced. The reactivity and enantioselectivity in asymmetric hydrogenation are highly influenced by hydrogen pres-sure, among other parameters.^{[2,11,13,23](#page-9-0)} This is due to either a change of the major catalytic species, or alternation of the mechanistic pathway, or both. The pressure effect is particularly significant in BINAP–Ru-catalyzed hydrogenation of unsaturated carboxylic acids.[23](#page-10-0) This and earlier studies on the BINAP–Ru-catalyzed hydrogenation suggest the operation of at least the three sets of cycles, as shown in [Figure 1](#page-3-0). The carboxylates attached to Ru act as either monodentate or bidentate ligands, while methanol may coordinate to the metallic center to stabilize the complexes.[25](#page-10-0)

The cycles designated S_1 and R_1 are the standard mechanism for BINAP–Ru-catalyzed hydrogenation of α , β -unsaturated carboxylic acids, as elucidated by kinetic studies, rate law analysis, and deuterium labeling experiments using tiglic acid.[18,26](#page-10-0) The reaction begins with

Figure 1. Possible mechanisms for the (R) -BINAP–Ru-catalyzed hydrogenation of α , β -unsaturated carboxylic acids in methanol. The C(3)-substituents in the substrates are omitted for clarity. Configuration of the Ru cycles are unspecified.

ligand exchange between the Ru diacetate (R) -1 (A) and substrate (Z) -2, giving (R) -5 (B) , which causes heterolysis of H_2 to afford catalytic Ru monohydride C. This complex is in equilibrium with the chelate olefin complex

D, which undergoes intramolecular hydride transfer to form the five-membered ring intermediate E. Protonolysis of the Ru–C bond with (Z) -2 results in F. This step is mediated by methanol. Finally, \bf{F} reacts with \rm{H}_{2} directly or

through **B** formed by $4/(Z)$ -2 ligand exchange, giving the Ru hydride C and the hydrogenation product 4, to complete the S_1 -H⁺ and \vec{R}_1 -H⁺ cycles. This mechanism forms 4-h,d with the use of H_2 and CH₃OD. Cycles S_1 and R_1 , giving enantiomeric 4, are diastereomorphic with one another, and proceed via a series of diastereomeric intermediates. Alternatively, the Ru–C linkage in E can be cleaved by H_2 to afford G, which, upon ligand exchange with (Z)-2, completes the S_1 -H₂ and R_1 -H₂ cycles. Reaction of **B** or **F** with H_2 limits the overall rate of hydrogenation. This mechanism yields the non-deuterated product $4-h.h$, even in CH₃OD.

This monohydride mechanism is known to operate in the (R) -1-catalyzed hydrogenation of enamides,^{[2,27](#page-9-0)} in which a RuH/ enamide chelate complex undergoes $RuH/C=C$ migratory insertion via a kinetically favored 'exo' cyclization process. In this reaction, however, the five-membered ring complex E formed from D requires a spatially constrained 'endo' addition of the Ru–H linkage to the $C(2)=C(3)$ bond. Therefore, 2+2 Ru–H addition across the olefinic bond occurs also via an additional non-chelate process in which (Z)-2 acts simply as an olefinic substrate.^{[27](#page-10-0)} Here the regiochemistry is determined electronically so as to form the more stable Ru–C(2) bond.^{[28](#page-10-0)} The resulting **I** is then cleaved either by a proton (S_2-H^+) and R_2-H^+ cycles) or H_2 (S_2-H_2) and R_2 -H₂ cycles) to give 4. Each pathway gives 4-d,h or 4-h,h, respectively. In both S_1 and S_2 (or R_1 and R_2) pathways, the two newly incorporated hydrogens have different origins—either H_2 and methanol, or two H_2 molecules.

Furthermore, under certain conditions, the Ru complex can form catalytic Ru 'dihydrides' possessing two hydridic ligands or an η^2 -H₂.^{[29](#page-10-0)} Hydrogenation of (Z)-2 with such a dihydride (S_3 and R_3 cycles) produces 4 in which two hydrogen atoms are supplied from a single H_2 molecule. Reaction with H_2 or D_2 gives either 4-h,h or 4-d,d, respectively, regardless of whether the reaction utilizes deuterated or non-deuterated methanol.

Assuming the possibility of these three cycles, isotopic labeling experiments serve as a useful tool for investigating the pathways leading to the chiral products. When H_2 is replaced by a 1:1 $H_2 - D_2$ mixture, the isotopomers of 4 obtained with H_2 and CH_3OD are redistributed, depending on the relative significance of each of these catalytic cycles. Table 2 shows the theoretical isotopic distribution in each possible catalytic cycle, where the H/D kinetic isotope effects are ignored.

2.4. Pathways leading to varying enantiomers

In asymmetric hydrogenation of unsaturated carboxylic acids, the sense and extent of enantioselectivity as well as the sensitivity to hydrogen pressure are highly dependent upon the substitution pattern of the substrates.[23](#page-10-0) Earlier studies on the hydrogenation of tiglic acid in methanol containing (R) -1, giving S-enriched 2-butanoic acid, suggested the operation of the Ru monohydride mechanism, S_1 -H⁺, as the dominant pathway.[18,26,30](#page-10-0) However, the details are unknown and, in particular, the origin of the minor *enantio*mer remains totally unclear. Isotopic labeling experiments provide a key to distinguish the origin of both the

Table 2. Theoretical isotope distribution factor for 1:1 H_2-D_2 in CH₃OD, assuming no kinetic isotope effect

Entry	Mechanism	$4-h.h$	$4-h.d$	$4-d.h$	$4-d.d$
		0.25	0.25	0.25	0.25
2	S_1 -H ₂ S_1 -H ⁺		0.5	0	0.5
3		0.25	0.25	0.25	0.25
4	S_2-H_2 S_2-H^+			0.5	0.5
5	S_{3}	0.5		O	0.5

enantiomeric products. In addition to the mechanistic models illustrated in [Figure 1,](#page-3-0) there may exist other unknown mechanisms involving different catalytic species. The selectivity *must* be affected by kinetic isotope effects. Nevertheless, comparison of the isotopomer ratios obtained with H_2/CH_3OD and H_2-D_2/CH_3OD allows for the estimation of the relative significance of the three catalytic cycles in the (R) -1-catalyzed asymmetric hydrogenation of (Z) -2 in methanol.

To facilitate the understanding, the results of deuterium labeling experiments in [Table 1](#page-2-0) are rearranged in [Figure 2](#page-5-0), particularly focusing on the H_2/CH_3OD and $H_2-D_2/$ CH3OD systems at 4, 50, and 100 atm. At each hydrogen pressure, the left and right regions correspond to the (S)-4 major product and the minor enantiomeric product (R) -4. The values shaded in yellow are the observed isotopomer ratios for H_2/CH_3OD (top) and H_2-D_2/CH_3OD (bottom). The detailed process involved in the calculation of the estimated result for H_2-D_2/CH_3OD on the basis of the observed result for H_2/CH_3OD and the theoretical isotopic distribution (Table 2) is shown in the middle unshaded part, in which the isotopomers distributed via the S_1 -H⁺, S_2 -H⁺, S_1 -H₂ and S_2 -H₂, and S_3 cycles ([Fig. 1\)](#page-3-0) are indicated in green, pink, blue, and red, respectively. The colors of the numerical values also correspond to those of the reaction pathways. If the vertical sum of the colored values is consistent with the observed value in the yellow part (bottom), the degree of contribution should be correct. The horizontal sum shows the degree of each catalytic cycle. As accuracy to the tenth place is meaningless in the discussion, all of the calculated values are rounded to the nearest integer. Qualitatively, a marked difference is easily seen both in the h,h/h,d/d,h/ d,d distribution patterns and the patterns of the enantiomeric products, depending on hydrogen pressure and other parameters. Quantification can be performed as follows.

First, the results from the 4 atm reaction are analyzed ([Fig. 2](#page-5-0)a). The hydrogenation generates (S) - and (R) -4 in a 97:3 ratio. The major S product consists of h, h, h, d, d, h , and d,d isotopomers in a 10.3:88.7:0.0:1.0 ratio, and the ratio shifts to 3.1:45.9:3.1:47.9 when the conditions are changed to 1:1 H₂–D₂/CH₃OD. The 88.7% h,d portion can be easily understood as being the product of the S_1 -H⁺ mechanism involving Ru monohydride and a Ru–C(3) species ([Fig. 1](#page-3-0), middle). S_1 -H⁺ should distribute the 88.7% into the four isotopomers in a 0:0.5:0:0.5 ratio under 1:1 H_2-D_2 conditions (Table 2 entry 2), giving ca. 44 (S)-h,d and ca. 44 (S) -d,d. The 10.3% h,h portion is expected to be generated via S_1 -H₂, S_2 -H₂, and/or S_3 . With the 1:1 H₂-D₂/CH₃OD system, S_1 -H₂ and S_2 -H₂ each give four isotopomers in equal amounts (Table 2, entries 1 and 3), while the S_3 route generates them in a $0.5:0:0:0.5$ ratio (entry 5). Note that h,h

(a)		major (S) -4				minor (R) -4					
		h.h	h,d	d,h	d, d		h,h	h.d	d.h	d,d	
	H_2 /C H_3 OD	10.3	88.7	0.0	1.0	contribution	53.3	30.0	16.7	0.0	H ₂ /CH ₃ OD
	S_1 -H ⁺		~188.7x0.5		~188.7x0.5	89% ! 30%		\sim 30.0x0.5		$-30.0x0.5$	R_1 -H ⁺
	S_2 -H ⁺			$-0.0x0.5$	$-0.0x0.5$	0% 16%			~16.7x0.5	~16.7x0.5	R_2 -H ⁺
	S_1 -H ₂ , S_2 -H ₂	~10.3x0.25	~10.3x0.25		\sim 10.3x0.25 \sim 10.3x0.25	10% ! 20%	~20x0.25	\sim 20x0.25	\sim 20x0.25	~20x0.25	R_1 -H ₂ , R_2 -H ₂
	S_{3}	$-0.0x0.5$			$\sim 0.0x0.5(1)$	0% 34%	~14x0.5			$-34x0.5$	R_3
	expected ratio	3	47	3	47		23	20	13	43	expected ratio
	H_2 -D ₂ /CH ₃ OD	3.1	45.9	3.1	47.9		23.3	20.1	13.3	43.3	H_2 -D ₂ /CH ₃ OD
(b)		major (S) -4				minor (R) -4					
		h,h	h,d	d,h	d,d		h,h	h,d	d,h	d,d	
	H ₂ /CH ₃ OD	44.5	52.4	1.0	2.1	contribution	56.7	26.7	16.6	0.0	H ₂ /CH ₃ OD
	S_1 -H ⁺		$-52.4x0.44$		$-52.4x0.56$	52% 26%		\sim 26.7x0.44		$-26.7x0.56$	R_1 -H ⁺
	S_2 -H ⁺			~1.0x0.44	~1.0x0.56	1% 17%				\sim 16.6x0.44 \sim 16.6x0.56	B_2 -H ⁺
	S_1 -H ₂ , S_2 -H ₂	$-44.5x0.19$	~144.5x0.25	$-44.5x0.25$	~144.5x0.31	$45%$ i 34%	$\sim 34x0.19$	\sim 34x0.25	\sim 34x0.25	\sim 34x0.31	R_1 -H ₂ , R_2 -H ₂
	S_{3}	$-0.0x0.44$			$\sim 0.0x0.56(2)$	0% 23%	$-23x0.44$			~23x0.56	R_3
	expected ratio	9	35	11.5	44.5		17	20.5	16	46.5	expected ratio
	H_2 -D ₂ /CH ₃ OD	9.3	32.1	11.9	46.7		24.4	15.6	17.8	42.2	H_2 -D ₂ /CH ₃ OD
(c)		major (S) -4				minor (R) -4					
		h,h	h,d	d,h	d,d		h,h	h,d	d,h	d,d	
	H_2 /C H_3 OD	57.4	37.8	1.1	3.7	contribution	82.2	9.3	7.8	0.7	H ₂ /CH ₃ OD
	S_1 -H ⁺		$-37.8x0.5$		$-37.8x0.5$	38% ! 9%		$-9.3x0.5$		$\sim 9.3 \times 0.5$	R_1 -H ⁺
	S_2 -H ⁺			~1.1x0.5	~1.1x0.5	1% 8%			$-7.8x0.5$	~27.8x0.5	R_2 -H ⁺
	S_1-H_2, S_2-H_2	$-57.4x0.25$	$-57.4x0.25$	$-57.4x0.25$	$-57.4x0.25$	57% 48%	~148x0.25	~148x0.25	~148x0.25	~48x0.25	R_1 -H ₂ , R_2 -H ₂
	S_3	$-0.0x0.5$			$\sim 0.0x0.5(4)$	0% 34%	~34x0.5			\sim 34x0.5(1)	R_3
	expected ratio	13	34	13.5	38.5		29	17	16	38	expected ratio
	H_2 -D ₂ /CH ₃ OD	12.8	35.1	11.7	40.4		30.0	16.7	18.3	35.0	H_2 -D ₂ /CH ₃ OD

Figure 2. Calculation process for obtaining the expected ratios in the 1:1 H₂–D₂/CH₃OD system on the basis of the observed results for the H₂/CH₃OD system. The values shaded in yellow are the observed. The values in parentheses are for some unknown mechanism; (a) 4 atm (S) -4 and (R) -4 were obtained in a 97:3 ratio; (b) 50 atm (S)-4/(R)-4=95.5:4.5. A 44:56 H₂-D₂ mixture was used, and this ratio is considered in the calculation of the distribution factors in [Table 2;](#page-4-0) (c) 100 atm (S) -4/ (R) -4=94:6.

formation occurs in 3.1% yield in the 1:1 H_2-D_2/CH_3OD system. Where the entire 10.3 parts to be split equally among h,h, h,d, d,h, and d,d, the yield would be 2.6% , which is within the expanded range of experimental error expected if the S_3 mechanism is involved.

The d,h isotopomer, which should originate from the S_2 -H⁺ cycle via Ru–H and the Ru–C(2) species (Fig. 2a), can be divided into d,h and d,d in the 1:1 H_2-D_2/CH_3OD system. As there is no d,h formed in the 4-atm experiment for the major product, the d,h and d,d are also 0 under H_2-D_2 conditions. The sum of the colored values in a column gives 3:47:3:47, which is highly consistent with the observed ratio of 3.1:45.9:3.1:47.9. The origin of the 1.0 part of d,d is not clear.^{[31](#page-10-0)} Thus, the contribution of S_1 -H⁺ and S_1 -H₂/S₂-H₂ in the formation of (S) -4 is ca. 89% and 10%, respectively.

The minor product (R) -4 produces totally different patterns from those of the major product (Fig. 2a, right). The observed ratio of h, h, h, d, d, h , and d, d is 53.3:30.0:16.7:0.0, which is characterized by a large amount of h,h . Gaseous hydrogen is more utilized in comparison with the major (S)-4 case. This phenomenon can be explained by the involvement of the R_3 cycle via a RuH₂ species and the R_2 -H₂ cycle via RuH and Ru-C(2) species [\(Fig. 1](#page-3-0), bottom and top). A change to 1:1 H_2-D_2/CH_3OD gives a 23.3:20.1:13.3:43.3 mixture. Thus, taking the 23.3 parts h,d into consideration, ca. 20 of the 53.3 parts from the H_2/CH_3OD system can be distributed

equally among h,h, h,d, d,h, and d,d (5:5:5:5) via the R_1 -H₂ cycle, and the remaining ca. 34 to h,h and d,d (17:17) via a RuH₂-involved \mathbf{R}_3 route. The 30 parts of h,d generated by R_1 -H⁺ are divided equally between h,d and d,d, and the 16.7 parts d,h generated via R_2 -H⁺ are divided equally between d,h and d,d . The vertical sum of these colored values gives a ca. 23:20:13:43 ratio, which is, again, quite consistent with the observed ratio. These results indicate that 34% , 46% , and 20% of the minor product (R) -4 is generated via a RuH₂ route (R_3) , a RuH-protonolysis route $(R_2-H^+$ and/or R_1-H^+), and a RuH-hydrogenolysis route $(R_1-H_2 \text{ and/or } R_2-H_2)$, respectively.

Good agreement between the values estimated from the H_2 / CH3OD results and the experimentally observed values can be seen both in the major and minor cases, even with changes in hydrogen pressure and the H_2-D_2 ratio (Fig. 2b and c). In all cases, an increase in the $H₂$ pressure from 4 to 50 atm and then to 100 atm in $CH₃OD$ enhances the contribution of gaseous hydrogen, giving larger amount of the h,h isotopomers (major: $10.3 \rightarrow 44.5 \rightarrow 57.4$; minor: $53.3 \rightarrow 56.7 \rightarrow 82.2$) together with a significant decrease in the h,d isotopomers (major: $88.7 \rightarrow 52.4 \rightarrow 37.8$; minor: $30.0 \rightarrow 26.7 \rightarrow 9.3$). A similar detailed analysis of the 50 atm H_2-D_2/CH_3OD results reveals that the major S product formed by RuH involves the S_1 -H₂/S₂-H₂ cycle (45%) and S_1 -H⁺ cycle (52%), and that the involvement of S_2 -H⁺ and S_3 is negligible (Fig. 2b). On the other hand, ca. 40% of the R minor product is formed via R_2 -H⁺ (17%) and R_3 (23%) cycles. The same tendency is observed with the 100 atm H_2-D_2/CH_3OD system [\(Fig. 2](#page-5-0)c): S_1-H_2/S_2-H_2 , 57%; S_1-H^+ , 38%; S_2 -H⁺, 1%; S_3 , 0% versus R_1 -H₂/R₂-H₂, 48%; R₁- H^+ , 9%; R_2 -H⁺, 8%; R_3 , 34%. Although the R_1 -H₂/ R_2 -H₂ ratio cannot be determined by the present isotope labeling method, a significant contribution from R_2 -H₂ is expected in the formation of the R minor product by taking the R_2 -H⁺/R₁-H⁺ ratio (ca. 1:1) into consideration.

These results indicate that the chelate RuH cycles S_1 and R_1 is S selective, but the non-chelate RuH cycles S_2 and R_2 and the RuH₂ cycles S_3 and R_3 are R-selective. Thus, the pathway forming the minor enantiomer is complicated and is not straightforward, while the major enantiomer is produced primarily (99% at 4 atm and 95% at 100 atm) by the standard monohydride mechanism.

3. Conclusion

Asymmetric catalysis converts a prochiral substrate into an enantiomerically-enriched chiral product. The enantioselectivity has generally been interpreted as a result of competing diastereomorphic catalytic cycles involving a single chiral catalyst without substantiation of the presupposition of the existence of the competing cycles. This BINAP–Ru-catalyzed asymmetric hydrogenation of an α , β -unsaturated carboxylic acid, together with earlier examples^{[18,26](#page-10-0)} suggests caution in making such an interpretation. This study indicates that: (1) the hydrogenation can involve several catalytic species, and (2) the major and minor enantiomers can be produced by different pathways.

4. Experimental

4.1. General

Nuclear magnetic resonance (NMR) spectra were measured on either a JEOL JNM-A400 equipped with a pulsed field gradient unit and a triple-resonance probe, a JEOL JNM-ECP500, or a Varian INOVA-500 instrument. The chemical shifts are expressed either in parts per million (ppm) downfield from Si(CH₃)₄ or in ppm relative to CHCl₃ (δ 7.26 in ¹H NMR and δ 77.0 in ¹³C NMR). Signal patterns of ¹H NMR as well as ¹³C NMR are indicated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad signal. GC–MS analyses were performed using a Shimadzu QP-5000. All melting points were determined with a Yanaco melting point apparatus and are uncorrected.

Analytical thin layer chromatography (TLC) was performed using Merck 5715 indicating plates precoated with silica gel 60 F254 (layer thickness: 0.25 mm). Liquid chromatographic purifications were performed by flash column chromatography, using glass columns packed with Merck 9385 (230–400 mesh). For analytical and preparative HPLC, a Shimadzu LC-10AD instrument equipped with a SCL-10A system controller, a DGU-4A degasser, a SIL-10AXL autosampler, a GILSON MODEL 201 fraction collector, and a Shimadzu SPD-10A UV detector were used. A DAICEL CHIRALCEL OD packed with cellulose tris(3,5 dimethylphenylcarbamate) was used as a column. Eluted compounds were detected at 254 nm.

All manipulations in the BINAP–Ru-catalyzed hydrogenation were carried out using a standard Schlenk technique on a dual manifold vacuum/Ar system. The structures of (Z) -2 and (E) -2 were determined by comparing the spec-tral data with reported values.^{[32](#page-10-0)} Conversion of (Z) -2 and (E) -2 was evaluated by comparison of the ¹H NMR signal intensity ratio at δ 2.18 (CH₃ of (Z)-2), δ 2.61 (CH₃ of (E) -2), and δ 1.31 (CH₃ of 4). The ee values of 4 were determined by HPLC analysis (conditions: column, CHIRALCEL OD $(10 \text{ mm} \times 25 \text{ cm})$; eluent, a $1000:1:3$ mixture of hexane/2-propanol/acetic acid; flow rate, 3 mL min⁻¹; temperature, 30° C; detector, 254 nm; retention time (t_R) of (R) -4, 27 min; t_R of (S) -4, 43 min) The absolute configuration of the hydrogenation product 4 was determined by comparison of the sign of the optical rotation with the reported value.^{[33](#page-10-0)}

4.2. Materials

 $CH₃OH$ and $CH₃OD$ for hydrogenation were degassed at reflux in the presence of Mg (250 mg/100 mL) under argon for 6 h and distilled into Schlenk flasks. CH₃OD contains 0.5% OH species. The solvent was further degassed by three freeze–thaw cycles before hydrogenation. CDCl₃ and D_2O were purchased from Aldrich Chemical Co. and used without further purification.

Ar gas was purified by passing it through a column of BASF R3-11 catalyst at 80° C, and then through a column of CaSO₄ at room temperature. H₂ gas of 99.99999% purity and D_2 gas containing 0.4% HD were purchased from Nippon Sanso, and HD gas containing 2% H₂ and 2% D₂ was obtained from Isotec. These gases were used for hydrogenation without purification. A 1:1 mixture of H_2 and D_2 gases was prepared by mixing 50 atm H_2 and 50 atm D_2 at -20 °C in a stainless steel autoclave containing a glass vessel. The $H_2/HD/D_2$ ratio was determined by GC analysis. Ne and He for GC analysis of the $H₂/HD/$ D_2 ratio were obtained from Takachiho Kogyo and the Japan Helium Center, respectively. He gas, purchased from Nippon Sanso, was used for GC–MS analysis of the $CH₃OH/CH₃OD$ ratio. The purities of Ne and He were 99.999% and 99.9999%.

 $Ru(CH_3COO)_2[(R)$ -binap] $[(R)-1]$ and $Ru(CH_3COO)_2[(S)$ binap] $[(S)-1]$ were prepared by the literature method.^{[17b](#page-10-0)} (Z) -3-Phenyl-2-butenoic acid $[(Z)$ -2] (mp 129.6– 130.8 °C) was synthesized according to the known method.^{[32](#page-10-0)} The D-labeled substrates (Z) -2-2-d and (E) -2-2-d were synthesized by addition of $(CH₃)₂CuLi$ to phenylpropionic acid, followed by treatment with 1 N DCl in D_2O solution, in a way similar to the established procedure for synthesis of the nonlabeled compound 32 (mp=130.6–131.8 °C for (Z)-2-2-d and 95.0–95.7 °C for (E) -2-2-d). The ¹³C-labeled substrate, (Z) -2-3⁻¹³C, was prepared from trimethyl phosphonoacetate and acetophenone-carbonyl- ${}^{13}C$ according to the literature method for preparation of the unlabeled compound.^{[34](#page-10-0)} The substrate

was purified by recrystallization from 3:1 hexane/ether at $4 °C$ (mp 129.0–131.0 °C).

4.3. Asymmetric hydrogenation of (Z)-3-phenyl-2-butenoic acid $[(Z)-2]$

The experiment with H_2/CH_3OH was conducted in an 80-mL Schlenk tube equipped with a Young's tap for the 1-atm trial, and in an 80-mL glass autoclave for the 4-atm trial. The high-pressure reaction was carried out in an 80-mL glass vessel placed in a stainless steel autoclave.

 $H₂/CH₃OH$ (1 atm): the substrate, (Z)-2 (58.2 mg, 0.36 mmol), and $CH₃OH$ (3.6 mL) were placed into a dry, Ar-filled, 20-mL Schlenk tube. The solution was degassed by three freeze–thaw cycles, and was transferred via a stainless canula to another 20-mL Schlenk tube containing (R) -1 $(1.5 \text{ mg}, 1.8 \text{ µmol})$. After the resulting yellow solution of the substrate and catalyst was degassed by two freeze–thaw cycles, it was introduced into the Ar-filled reaction vessel and then stirred under an initial H_2 pressure of 1 atm at 30 °C for 116 h. After removal of the solvent, conversion of (Z) -2 was determined by 1 H NMR analysis to be 100%. The crude reaction mixture was purified on a silica gel column (eluent, 1:1 hexane/ether) to give (S) -4 in 94% ee.

 H_2/CH_3OH (4 atm): 59.3 mg (100 mM) (Z)-2, [(R)-1]=0.5 mM; 4 atm H₂; CH₃OH; 30 \degree C; 48 h. The conversion and ee were 100% and 94%, respectively.

 H_2/CH_3OH (50 atm): 99.2 mg (100 mM) (Z)-2, $[(R)$ -1]=0.5 mM; 50 atm H₂; CH₃OH; 30 °C; 24 h. The conversion and ee were 100% and 92%, respectively.

H₂/CH₃OH (100 atm): 99.4 mg (100 mM) (Z)-2, $[(R)$ -1]=0.5 mM; 100 atm H_2 ; CH₃OH; 30 °C; 12 h. The conversion and ee were 100% and 88%, respectively. (S)-4: ¹H NMR (400 MHz, CDCl₃) δ 1.31 (d, 3, J=6.8 Hz, CH₃), 2.57 (dd, 1, $J=16$ Hz and 8.3 Hz, C(2)H_S), 2.66 (dd, 1, $J=16$ and 6.8 Hz, $C(2)H_R$), 3.26 (ddd, 1, J=8.3, 6.8 and 6.8 Hz, C(3)H), 7.17–7.32 (m, 5, aromatic), 9.40–10.50 (br, 1, COOH).

4.4. X-ray crystallographic analyses for $Ru[(Z)-CH₃(C₆H₅)C=CHCOO]₂[(R)-binap]$

 $Ru(CH_3COO)_2[(R)$ -binap] $[(R)$ -1] (50.6 mg, 60.1 µmol) and (Z) -2 (208 mg, 1.28 mmol) were placed in a dry 20-mL Schlenk tube, and $CH₃OH$ (15 mL) was introduced under an Ar stream. The solution was stirred for 1 h at room temperature, during which time a yellow solid precipitated. The supernatant liquid was removed via a canula covered with filter paper at one end. The solid was washed with $CH₃OH$ (10 mL) and dried in vacuo, affording yellow powdery crystals of Ru[(Z)-CH₃(C₆H₅)C=CHCOO]₂[(R)-binap] [(R)-5] (32.6 mg, 52% yield). Orange prismatic crystals were obtained by recrystallization of (R) -5 (ca. 10 mg) using a liquid–liquid diffusion of hexane (4 mL) into toluene (1 mL) at 4° C. A single crystal (0.22 mm×0.20 mm×0.14 mm) was mounted on the top of a quartz fiber with a small amount of epoxy resin adhesive and transferred to a goniometer head. The data was collected in a $-100\degree\text{C}$ nitrogen atmosphere. The molecular structure of (R) -5 is illustrated in Figure 3.

Figure 3. The X-ray crystal structure of $Ru[(Z)-CH_3(C_6H_5)C=$ $CHCOO₂[(R)-bianp] [(R)-5]$.

4.5. Isotopic labeling experiments

4.5.1. $H_2/HD/D_2$ and CH_3OH/CH_3OD analysis. The $H_2/$ $HD/D₂$ ratio was analyzed via low temperature column chromatography according to published methods.[2,35](#page-9-0) The $CH₃OH/CH₃OD$ ratio was determined by GC–MS analysis on a Shimadzu GCMS-QP5000.^{[2](#page-9-0)}

4.5.2. Structural determination of isotopomers. The structures of the four isotopomers, $4-h,h$, $4-h,d$, $4-d,h$, and 4-d,d, were determined by analyses of the ¹³C{¹H} NMR spectra and ${}^{13}C[{^1}H, {}^{2}H] - {}^{1}H$ correlation spectra taken in CDCl₃ at 23° C using a JEOL JNM-A400. To minimize the magnetic field instability associated with no D-spin lock, the measuring time was shortened by use of a high concentration of the sample (69 mg/ 0.6 mL), an acquisition time of 0.550 s, a pulse delay of 2.000 s, a scan number of 16, and a measurement time of 95 min. The α -carbons of the four isotopomers resonate at δ 42.58, 42.48, 42.26, and 42.16 as singlets and were correlated with the α -proton signals at δ 2.665 (dd, $J=7$ and 15 Hz) and 2.567 (dd, $J=7$ and 15 Hz), 2.656 (d, $J=15$ Hz) and 2.560 (d, $J=15$ Hz), 2.640 (d, $J=9$ Hz), and 2.641 (s), respectively. From analysis of the coupling mode, the four α -carbon signals from low to high field were assigned to $4-h,h$, $4-h,d$, $4-d,h$, and 4-d,d. In a similar way, the $C(3)$ carbon signals at δ 36.10, 36.04, 35.71, and 35.65 were assigned to 4-h,h, $4-d,h$, $4-h,d$, and $4-d,d$, respectively. These assignments were consistent with the empirical rule that a D-possessing carbon atom resonates at higher field with a larger number of D.^{[36](#page-10-0)} (S)-4: ¹H NMR (400 MHz, CDCl₃) δ 2.560 (d, J=15 Hz, C(2)H_S of 4-h,d), 2.567 (dd, J=7 and 15 Hz, $C(2)H_S$ of 4-h,h), 2.640 (d, J=9 Hz, C(2)H of 4-d,h), 2.641 (s, C(2)H of 4-d,d), 2.656 (d, $J=15$ Hz, C(2)H_R of 4-h,d), 2.665 (dd, J=7 and 15 Hz, C(2)H_R of **4-h,h).** ¹³C{¹H,²H} NMR (100 MHz, CDCl₃) δ 35.65 (s, C(3) of $4-d,d$, 35.71 (s, C(3) of $4-h,d$, 36.04 (s, C(3) of 4-h,d), 36.10 (s, C(3) of 4-d,h), 42.16 (s, C(2) of 4-d,d), 42.26 (s, C(2) of 4-d,h), 42.48 (s, C(2) of 4-h,d), 42.58 (s, C(2) of $(4-h,h)$. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 35.65 (t, J = 21 Hz, C(3) of 4-d,d), 35.71 (t, $J=20$ Hz, C(3) of 4-h,d), 36.04 (s, C(3) of 4-d,h), 36.10 (s, C(3) of 4-h,h), 42.16 (t, J=19 Hz, C(2) of 4-d,d),

42.26 (t, $J=19$ Hz, C(2) of $4-d,h$, 42.48 (s, C(2) of 4-h,d), 42.58 (s, $C(2)$ of 4-h,h).

4.5.3. Determination of the relative stereochemistry of **4-d,h.** The relative stereochemistry of $4-d,h$ was determined by comparing the ¹H NMR data with those of reference isotopomers, namely a mixture of $(2R^*, 3S^*)$ -4-d,h and $(2S^*, 3S^*)$ -4-d,h prepared by reduction of (Z) -2-2-d and (E) -2-2-d, respectively, with diimide (Section 4.5.4), which is known to proceed via cis addition of hydrogen.^{[21](#page-10-0)} ¹H NMR of $(2R^* \cdot 3S^*)$ -4-d,h (500 MHz, CDCl₃) δ 2.53 (1, br d, $J=8.3$ Hz, C(2)H). ¹H NMR of $(2S^*, 3S^*)$ -4-d,h (500 MHz, CDCl₃) δ 2.64 (1, dr s, C(2)H). Because of the priority rule, $(2R,3S)$ -4-d,h-3-¹³C and $(2S,3R)$ -4-d,h-3-¹³C correspond to $(2S^*, 3S^*)$ -4-d,h.

4.5.4. Synthesis of reference isotopomers. The 3S-enriched reference isotopomers $4-h,h$, $4-d,d$ and mixtures of $4-h,h$ and 4-h,d, and 4-d,h and 4-d,d were prepared by the reduction of (Z) -2 under the following conditions. For 4-h,h: (Z) -2 (50.0 mg, 0.31 mmol); (S)-1 (1.0 mg, 1.2 mmol); CH3OH (3.1 mL) ; 4 atm H₂; 30 °C; 48 h. For 4-d,d: (Z) -2 $(50.0 \text{ mg}, 0.31 \text{ mmol})$; (S) -1 $(1.0 \text{ mg}, 1.2 \text{ mmol})$; CH_3OD (3.1 mL) ; 1 atm D₂; 30 °C; 216 h. For a 77:23 mixture of 4-h,h and 4-d,h: (Z)-2 (100 mg, 0.62 mmol); (S)-1 (3.0 mg, 3.6 μ mol); CH₃OD (6.2 mL); 4 atm HD; 30 °C; 338 h. For a $24:76$ mixture of $4-h,d$ and $4-d,d$: (Z)-2 (100 mg, 0.62 mmol); (S)-1 (3.0 mg, 3.6 μ mol); CH₃OD (6.2 mL); 4 atm HD; 30 \degree C; 168 h. All conversions were 100%. Products were purified by silica gel column chromatography (eluent, 1:1 hexane/ether).

The reference isotopomers $(2R^*, 3S^*)$ -4-d,h and $(2S^*, 3S^*)$ -4-d,h were prepared by the reduction of (Z) -2-2-d and (E) -2-2-d with diimide under the following conditions. $(2R^*, 3S^*)$ -4-d,h: (Z) -2-2-d $(22.0 \text{ mg}, 0.14 \text{ mmol});$ $NH₂NH₂·H₂O$ (40 mg, 0.80 mmol); $CuSO₄·5H₂O$ $(1.4 \text{ mg}, 5.6 \text{ µmol})$; C₂H₅OH (3.0 mL) ; 22 h; 10% conversion. For $(2S^*, 3S^*)$ -4-d,h: (E) -2-2-d $(22.0 \text{ mg}, 0.14 \text{ mmol})$;
NH₂NH₂·H₂O $(40 \text{ mg}, 0.80 \text{ mmol})$; CuSO₄·5H₂O $NH₂·H₂O$ (40 mg, 0.80 mmol); $CuSO₄·5H₂O$ (1.4 mg, 5.6 μ mol); C₂H₅OH (3.0 mL); 22 h; 35% conversion. No E/Z isomerization was observed in the reduction of (E) -2-2-d, whereas the unreacted substrate contained about 10% of the E isomer in the reduction of (Z) -2-2-d.

4.5.5. Separation of the enantiomers. The major (S)-4 and minor (R) -4 products obtained in the BINAP–Ru-catalyzed hydrogenation with either H_2/CH_3OD , H_2-D_2/CH_3OD , or D_2/CH_3OD were separated under the following conditions: a mixture of (Z)-2 and 4, 20–25 mg; column, CHIRALCEL OD $(20 \text{ mm} \times 250 \text{ mm})$; eluent, $1000:1:3 \text{ hexane}/2$ -propanol/acetic acid; flow rate, 10.0 mL min^{-1} ; temperature, 30 °C; detector, 254 nm; t_R of (R)-4, 45 min; t_R of (S)-4, 85 min. There is no overlap of the compounds.

4.5.6. Determination of the isotopomer ratios. The isotopomer ratios of (S) -4-3-¹³C and (R) -4-3-¹³C were determined by measurement of the C(3) carbon signal area in the ${}^{13}C\{{}^{1}H,{}^{2}H\}$ NMR spectra, which were taken using a nanoprobe under the following conditions: flip angle, 48.0 °; acquisition time (AT), 2.621 s; pulse delay (PD), 30.000 s; sample concentration, 1.0 mg/40 µL; measurement time, 256 scans (2.3 h). ¹H and ²H decoupling was

effected only during the acquisition time. The values of relaxation time, T_1 , obtained by the inversion recovery method were $\langle 4.5 \text{ s}$ for both C(2) and C(3) carbons and $\langle 5 \text{ s}$ for all protons. These values satisfied the necessary conditions, PD $>5\times T_1$ for protons and AT+PD $> 5\times T_1$ for carbons.

4.5.7. H_2/CH_3OD conditions. The experiments with $H_2/$ CH3OD under 4 or 10 atm were conducted in a 400-mL glass autoclave, whereas the high-pressure reactions under 50 or 100 atm of $H₂$ were carried out in a 200-mL glass vessel placed in a stainless steel autoclave.

 H_2/CH_3OD (4 atm): reaction scale, 202 mg (100 mM) (Z)-2- $3\text{-}^{13}C$; [(R)-1]=0.5 mM; 4 atm H₂; CH₃OD; 30 °C. After 9 h, the gas in the reaction vessel was transferred to an 80 mL vacuumed Schlenk flask, and the solvent was recovered by distillation. The $H_2/HD/D_2$ and CH_3OH/CH_3OD ratios, as analyzed by the methods above, were 98.0:2.0:0 and $\langle 1$: >99, respectively. The residue was subjected to ¹H NMR and HPLC analyses, which determined the conversion and ee to be 10% and 94%, respectively. The crude reaction mixture was purified by silica gel column chromatography (eluent, 1:1 hexane/ether) to remove the Ru complex. The (Z) -2-3-¹³C and 4-3-¹³C mixture was separated by preparative HPLC (conditions, see Section 4.5.5) to give (Z) -2-3-¹³C, (S)-4-3-¹³C containing (S)-4-h,h-3-¹³C, (S)-4h,d-3⁻¹³C, (2R,3S)-4-d,h-3⁻¹³C, and (2R,3S)-4-d,d-3⁻¹³C in a 10.3:88.7:0.0:1.0 ratio and (R) -4-3-¹³C containing (R) -4-h,h-3-¹³C, (R)-4-h,d-3-¹³C, (2S,3R)-4-d,h-3-¹³C, and $(2S, 3R)$ -4-d,d-3-¹³C, in a 53.3:30.0:16.7:0.0 ratio. The ratio of the ¹H NMR signal intensity at δ 2.62–2.71(m) and δ 2.53–2.62(m) was 100:99 for the major enantiomer and 100:83 for the minor enantiomer.

 $H₂/CH₃OD$ (10 atm): reaction scale, 202 mg (100 mM) (Z) -2-3-¹³C; [(R)-1]=0.5 mM; 10 atm H₂; CH₃OD; 30 °C; 10 h. These conditions converted 10% of the (Z) -2-3-¹³C to give (S) -4-3-¹³C in 94% ee. The H₂/HD/D₂ and CH₃OH/CH₃OD ratios were 98.7:1.3:0 and \langle 1:>99. The (S) -4-h,h-3-¹³C/(S)-4-h,d-3-¹³C/(2R,3S)-4-d,h-3-¹³C/(2R,3S)-4-d,d-3⁻¹³C ratio and the (R) -4-h,h-3-¹³C/(R)-4-h,d-3- $13C/(2S,3R)$ -4-d,h-3- $13C/(2S,3R)$ -4-d,d-3- $13C$ ratio were 22.7:75.8:0.5:1.0 and 56.7:26.7:16.6:0.0. The ratio of the ¹H NMR signal intensity at δ 2.62–2.71(m) and δ 2.53– 2.62(m) was 100:98 for the major enantiomer and 100:83 for the minor enantiomer.

 $H₂/CH₃OD$ (50 atm): reaction scale, 202 mg (100 mM) (Z)-**2**-3-¹³*C*; [(R)-1]=0.5 mM; 50 atm H₂; CH₃OD; 30 °C; 10 min. These conditions converted 16% of the (Z)-2- 3-¹³C to give (S)-4-3-¹³C in 91% ee. The H₂/HD/D₂ and CH_3OH/CH_3OD ratios were 99.7:0.3:0 and <1:>99. The (S) -4-h,h-3-¹³C/(S)-4-h,d-3-¹³C/(2R,3S)-4-d,h-3-¹³C/ $(2R,3S)$ -4-d,d-3-¹³C ratio and the (R) -4-h,h-3-¹³C/(R)- $4-h,d-3-13C/(2S,3R)-4-d,h-3-13C/(2S,3R)-4-d,d-3-13C$ ratio were 44.5:52.4:1.0:2.1 and 72.9:15.5:11.1:0.5. The ratio of the ¹H NMR signal intensity at δ 2.62–2.71(m) and δ 2.53–2.62(m) was 100:98 for the major enantiomer and 100:89 for the minor enantiomer.

 $H₂/CH₃OD$ (100 atm): reaction scale, 202 mg (110 mM) (Z)-2-3-¹³C; [(R)-1]=0.5 mM; 100 atm H₂; CH₃OD; 30 °C; 7 min. These conditions converted 22% of the (Z) -2-3-¹³C to give (S)-4-3-¹³C in 88% ee. The H₂/HD/D₂ and CH₃OH/ CH₃OD ratios were 99.8:0.2:0 and <1:>99. The (S)-4-h,h- $3^{-13}C/(S)$ -4-h,d- $3^{-13}C/(2R,3S)$ -4-d,h- $3^{-13}C/(2R,3S)$ -4-d,d- 3^{-1} ¹³C ratio and the (R) -4-h,h-3-¹³C/(R)-4-h,d-3-¹³C/(2S,3R)-4 $d,h-3$ -¹³C/(2S,3R)-4- $d,d-3$ -¹³C ratio were 57.4:37.8:1.1:3.7 and $82.2:9.3:7.8:0.7$. The ratio of the 1 H NMR signal intensity at δ 2.62–2.71(m) and δ 2.53–2.62(m) was 100:95 for the major enantiomer and 100:92 for the minor enantiomer. Under all conditions, the ratio of the ¹H NMR signal intensities were quite consistent with the values calculated from the ¹³C signal intensities, and the C(2)H/C(3)CH₃ proton signal ratio of the recovered (Z) -2-3-¹³C were determined to be 1.0:3.0 by 1 H NMR analysis (flip angle, 45°; repetition time, 10 s; measurement time, 128 scans).

4.5.8. $H_2 - D_2 / CH_3 OD$ conditions. The procedure for the H_2-D_2/CH_3OD system was the same as that for the $H_2/$ $CH₃OD$ system.

 H_2-D_2/CH_3OD (4 atm): reaction scale, 202 mg (100 mM) (Z) -2-3-¹³C; $[(R)$ -1]=0.5 mM; 4 atm H₂-D₂; CH₃OD; 30 °C; 9 h. These conditions converted 17% of the (Z) -2-3-¹³C to give (S)-4-3-¹³C in 94% ee. The H₂/HD/D₂ and CH₃OH/CH₃OD ratios were 49.0:2.3:48.7 and <1:>99. The (S) -4-h,h-3-¹³C/(S)-4-h,d-3-¹³C/(2R,3S)-4-d,h-3-¹³C/ $(2R,3S)$ -4-d,d-3-¹³C ratio and the (R) -4-h,h-3-¹³C/(R)- $4-h.d-3⁻¹³C/(2S,3R)-4-d.h-3⁻¹³C/(2S,3R)-4-d.d-3⁻¹³C$ ratio were 3.1:45.9:3.1:47.9 and 23.3:20.1:13.3:43.3. The intensity ratios of the ¹H NMR signals at δ 2.62–2.71(m) and δ 2.53–2.62(m) were 100:48 for the major enantiomer and 100:43 for the minor enantiomer, respectively.

 H_2 –D₂/CH₃OD (50 atm): reaction scale, 202 mg (100 mM) (Z) -2-3-¹³C; $[(R)$ -1]=0.5 mM; 50 atm H₂-D₂; CH₃OD; 30 °C; 12 min. These conditions converted 10% of (Z) -2- $3^{-13}C$ to give (S)-3-3-¹³C in 92% ee. The H₂/HD/D₂ and CH₃OH/CH₃OD ratios were 44.0:0.3:55.7 and <1:>99. The (S) -4-h,h-3-¹³C/(S)-4-h,d-3-¹³C/(2R,3S)-4-d,h-3-¹³C/ $(2R,3S)$ -4-d,d-3-¹³C ratio and the (R) -4-h,h-3-¹³C/(R)-4-h,d-3-¹³C/(2S,3R)-4-d,h-3-¹³C/(2S,3R)-4-d,d-3-¹³C ratio were 9.3:32.1:11.9:46.7 and 24.4:15.6:17.8:42.2. The ratio of the ¹H NMR signal intensity at δ 2.62–2.71(m) and δ 2.53–2.62(m) was 100:40 for the major enantiomer and 100:38 for the minor enantiomer.

 H_2 –D₂/CH₃OD (100 atm): reaction scale, 202 mg (100 mM) (Z) -2-3-¹³C; $[(R)$ -1 $]=0.5$ mM; 100 atm H₂-D₂; CH₃OD; 30 °C; 7 min. These conditions converted 6% of (Z) -2- $3^{-13}C$ to give (S)-4-3-¹³C in 88% ee. The H₂/HD/D₂ and CH₃OH/CH₃OD ratios were 48.6:2.0:49.4 and <1:>99. The (S) -4-h,h-3-¹³C/(S)-4-h,d-3-¹³C/(2R,3S)-4-d,h-3-¹³C/ $(2R,3S)$ -4-d,d-3-¹³C ratio and the (R) -4-h,h-3-¹³C/(R)-4-h,d-3-¹³C/(2S,3R)-4-d,h-3-¹³C/(2S,3R)-4-d,d-3-¹³C ratio were 12.8:35.1:11.7:40.4 and 30.0:16.7:18.3:35.0. The ratio of the ¹H NMR signal intensity at δ 2.62–2.71(m) and δ 2.53– 2.62(m) was 100:45 for the major enantiomer and 100:45 for the minor enantiomer. At all conditions, the proton signal ratio of the vinylic proton and the CH₃ of the recovered (Z) -2- $3^{-13}C$ was determined to be 1.0:3.0 by ¹H NMR analysis.

4.5.9. D_2/CH_3OD condition. The procedure was the same as that for the H_2/CH_3OD system except for the size of the reactor (250-mL Schlenk tube) and the purification process. D_2/CH_3OD (4 atm): reaction scale, 123 mg (100 mM) (Z) -2-3-¹³C; [(R)-1]=0.5 mM; 4 atm D₂; CH₃OD; 30 ^oC; 35.2 h. These conditions converted 99.9% of (Z) -2-3-¹³C to give (S) -4-3-¹³C in 94% ee. The H₂/HD/D₂ and $CH₃OH/CH₃OD$ ratios were 0:2.0:98.0 and 1:99. The (S) -4-h,h-3- $^{13}C/(S)$ -4-h,d-3- $^{13}C/(2R,3S)$ -4-d,h-3- $^{13}C/(2R,3S)$ -4-d,d-3-¹³C ratio and the (R) -4-h,h-3-¹³C/(R)-4-h,d-3-¹³C/ $(2S,3R)$ -4-d,h-3-¹³C/(2S,3R)-4-d,d-3-¹³C ratio were 0:0:1.1:98.9 and $0:0:0:>99.9$. The proton signal ratio of the vinylic proton and the CH₃ of the recovered (Z) -2-3-¹³C was determined to be $1.0:3.0$ by 1 H NMR analysis.

4.5.10. Isotope stability of $(2R,3R)$ -4-d,d. The hydrogenation of tiglic acid (13.7 mg, 0.137 mmol) was carried out in CH₃OH (2.7 mL) containing $(2R,3R)$ -4-d,d with an ee of 94% (22.3 mg, 0.137 mmol) under 4 atm of H₂ at 30 °C for 48 h. Substrate of 100% was converted to 2-methylbutanoic acid. After removal of all the volatiles in vacuo, a portion of the residue was chromatographed on a TLC plate $(20 \text{ cm} \times 20 \text{ cm} \times 1 \text{ mm})$; eluent, a 4:1 CHCl₃/acetone) to give 4 (4.2 mg). The recovered 4 dissolved in CDCl₃ was subjected to ${}^{1}H$ NMR analysis. The intensities of the C(2) and $C(3)$ protons and ee of the recovered 4 were virtually unchanged, indicating that $(2R,3R)$ -4-d,d is isotopically stable.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (Nos. 07CE2004, 05234101, 06226234, 08240101, 00000548, 60000491, and 9900481) from the Ministry of Education, Science, Sports and Culture, Japan. The authors would like to thank Professor R. Noyori for valuable discussions and Messrs. T. Noda, K. Oyama, and Y. Maeda for their technical support for reaction vessel production and NMR measurements.

Supplementary data

ORTEP drawings, tables of the atomic parameters, selected bond distances and bond angles, selected torsion angles, and anisotropic temperature factors for $Ru[(Z)-CH_3(C_6H_5)C=$ $CHCOO₂[(R)$ -binap] are available (12 Pages). Supplementary data associated with this article can be found in the online version, at [doi:10.1016/j.tet.2007.08.071.](http://dx.doi.org/doi:10.1016/j.tet.2007.08.071)

References and notes

- 1. Arrhenius, S. Z. Phys. Chem. 1889, 4, 226–248.
- 2. The only exception: Kitamura, M.; Tsukamoto, M.; Bessho, Y.; Yoshimura, M.; Kobs, U.; Widhalm, M.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6649–6667.
- 3. (a) Sun, Y.; LeBlond, C.; Wang, J.; Blackmond, D. G.; Laquidara, J.; Sowa, J. R., Jr. J. Am. Chem. Soc. 1995, 117, 12647–12648; (b) Sun, Y.; Wang, J.; LeBlond, C.; Reamer, R. A.; Laquidara, J.; Sowa, J. R., Jr.; Blackmond, D. G. J. Organomet. Chem. 1997, 548, 65–72.
- 4. BINAP=2,2'-bis(diphenylphosphino)-1,1'-binaphthyl.
- 5. A similar type of double bond isomerization is also seen in the hydrogenation of arylalkenes mediated by a chiral phosphine/Ir

catalyst: Hou, D.-R.; Reibenspies, J.; Colacot, T. J.; Burgess, K. Chem.—Eur. J. 2001, 7, 5391–5400.

- 6. (a) Detellier, C.; Gelbard, G.; Kagan, H. B. J. Am. Chem. Soc. 1978, 100, 7556–7561; (b) Koenig, K. E.; Knowles, W. S. J. Am. Chem. Soc. 1978, 100, 7561–7564.
- 7. (a) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 8952–8965; (b) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 11703–11714.
- 8. Certain chiral substrates undergo racemization during reaction, allowing dynamic kinetic resolution. See: (a) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, 144– 152; (b) Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36–56.
- 9. Ishibashi, Y.; Bessho, Y.; Yoshimura, M.; Tsukamoto, M.; Kitamura, M. Angew. Chem., Int. Ed. 2005, 44, 7287-7290.
- 10. A report on a concept of the different pathways via same chain carrier: Sawamura, M.; Kuwano, R.; Ito, Y. J. Am. Chem. Soc. 1995, 117, 9602–9603.
- 11. Landis, C. R.; Halpern, J. J. Am. Chem. Soc. 1987, 109, 1746– 1754.
- 12. This is not always the case, see Ref. 13.
- 13. Kitamura, M.; Yoshimura, M.; Tsukamoto, M.; Noyori, R. Enantiomer 1996, 1, 281–303.
- 14. Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org. Chem. 1987, 52, 3174–3176.
- 15. Uemura, T.; Zhang, X.; Matsumura, K.; Sayo, N.; Kumobayashi, H.; Ohta, T.; Nozaki, K.; Takaya, H. J. Org. Chem. 1996, 61, 5510–5516.
- 16. For a similar double bond isomerization, see Refs. [2 and 6.](#page-9-0) The simplest type 2 substrate (Z) -3-methyl- d_3 -2-butenoic acid also suffers from isomerization from α , β - to β , γ -unsaturated carboxylic acid.
- 17. (a) Ohta, T.; Takaya, H.; Noyori, R. Inorg. Chem. 1988, 27, 566–569; (b) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Org. Chem. 1992, 57, 4053–4054.
- 18. Ashby, M. T.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 589– 594.
- 19. (a) Ashby, M. T.; Khan, M. A.; Halpern, J. Organometallics 1991, 10, 2011–2015; (b) Chen, C.-C.; Huang, T.-T.; Lin, C.-W.; Cao, R.; Chan, A. S. C.; Wong, W. T. Inorg. Chim. Acta 1998, 270, 247–251.
- 20. For the mechanism of the H/D exchange between RuH and $CH₃OD$ and between RuH and $D₂$, see: (a) Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155–284; (b) Heinekey, D. M.; Mellows, H.; Pratum, T. J. Am. Chem. Soc. 2000, 122, 6498–6499.
- 21. The absolute configurations, 2R,3S and 2S,3R, are altered to 2S,3S and 2R,3R with the ¹³C-nonlabeled 4-d,h and 4-d,d.
- 22. Corey, E. J.; Pasto, D. J.; Mock, W. L. J. Am. Chem. Soc. 1961, 83, 2957–2958.
- 23. (a) Noyori, R.; Kitamura, M. Modern Synthetic Methods; Scheffold, R., Ed.; Springer: Berlin, 1989; pp 115–198; (b) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley: New York, NY, 1994; Chapter 2.
- 24. Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201–2237.
- 25. For a molecular structure of $Ru(CH_3COO)_2[(R)$ -binap]- $(CH₃OH)$ in catalysis: see Ref. [2.](#page-9-0)
- 26. Ohta, T.; Takaya, H.; Noyori, R. Tetrahedron Lett. 1990, 31, 7189–7192.
- 27. Enamides: (a) Wiles, J. A.; Bergens, S. H. Organometallics 1998, 17, 2228–2240; (b) Wiles, J. A.; Bergens, S. H. Organometallics 1999, 18, 3709–3714; Other alkenes: (c) Ohta, T.; Ikegami, H.; Miyake, T.; Takaya, H. J. Organomet. Chem. 1995, 502, 169–176; (d) Schmid, R.; Broger, E. A.; Cereghetti, M.; Crameri, Y.; Foricher, J.; Lalonde, M.; Müller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. Pure Appl. Chem. 1996, 68, 131-138; (e) Bell, S.; Wüstenberg, B.; Kaiser, S.; Menges, F.; Netscher, T.; Pfaltz, A. Science 2006, 311, 642–644.
- 28. Lubell, D. W.; Kitamura, M.; Noyori, R. Tetrahedron: Asymmetry 1991, 2, 543–554.
- 29. Dihydride η^2 -H₂: (a) Yu, J.; Spencer, J. B. *J. Am. Chem. Soc.* 1997, 119, 5257–5258; (b) Yu, J.; Spencer, J. B. J. Org. Chem. 1997, 62, 8618–8619; (c) Fong, T. P.; Lough, A. J.; Morris, R. H.; Mezzetti, A.; Rocchini, E.; Rigo, P. J. Chem. Soc., Dalton Trans. **1998**, 2111-2113.
- 30. Mechanistic study of asymmetric hydrogenation of α , β -unsaturated acids with diphosphine–Ru complexes: (a) Chan, A. S. C.; Chen, C. C.; Yang, T. K.; Huang, J. H.; Lin, Y. C. Inorg. Chim. Acta 1995, 234, 95–100; (b) Shaharuzzaman, M.; Chickos, J.; Tam, C. N.; Keiderling, T. A. Tetrahedron: Asymmetry 1995, 6, 2929–2932; (c) Hardick, D. J.; Blagbrough, I. S.; Potter, B. V. L. J. Am. Chem. Soc. 1996, 118, 5897–5903; (d) Shaharuzzaman, M.; Braddock-Wiking, J.; Chickos, J. S.; Tam, C. N.; Silva, R. A. G. D.; Keiderling, T. A. Tetrahedron: Asymmetry 1998, 9, 1111–1114.
- 31. The $4-d,d$ isotopomer may be derived via the RuD species formed by the H/D exchange between RuH and $CH₃OD$, see: Bakos, J.; Karaivanov, R.; Laghmari, M.; Sinou, D. Organometallics 1994, 13, 2951–2956.
- 32. (a) Klein, J.; Turkel, R.M. J. Am.Chem. Soc. 1969,91,6186–6187; (b) Klein, J.; Aminadav, N. J. Chem. Soc. C 1970, 1380–1385.
- 33. Almy, J.; Cram, D. J. J. Am. Chem. Soc. 1969, 91, 4459–4468.
- 34. Takahashi, H.; Fujiwara, K.; Ohta, M. Bull. Chem. Soc. Jpn. 1962, 35, 1498–1500.
- 35. Kudo, H.; Fujie, M.; Tanase, M.; Kato, M.; Kurosawa, K.; Sugai, H.; Umezawa, H.; Matsuzaki, T.; Nagamine, K. Appl. Radiat. Isot. 1992, 43, 577–583.
- 36. Hansen, P. E. Annu. Rep. NMR Spectrosc. 1984, 15, 105–234.